From The Economist print edition
The good news is reality exists. The bad is it's even stranger than people thought
好消息是存在有真實。壞消息是它比人們之前認為的更奇怪。
「HOW wonderful that we have met with a paradox. Now we have some hope of making progress.」 So said Niels Bohr, one of the founders of quantum mechanics. Since its birth in the 1920s, physicists and philosophers have grappled with the bizarre consequences that his theory has for reality, including the fundamental truth that it is impossible to know everything about the world and, in fact, whether it really exists at all when it is not being observed. Now two groups of physicists, working independently, have demonstrated that nature is indeed real when unobserved. When no one is peeking, however, it acts in a really odd way.
「多麼神奇,我們遇到了矛盾!現在我們有機會前進了。」量子力學[1]的奠基人尼爾斯•玻爾如是說。自從該理論19世紀20年代誕生之日起,物理學家和哲學家一直在探索這一理論對真實造成的奇怪結果,包括對一個基本真理的探索,即不可能知道世界上的一切事物,以及事實上,我們看不到的東西是否確實存在。現在獨立工作的兩組物理學家已經證實了看不見的自然確實存在。然而,當沒人看得見時,自然的行為方式卻十分奇怪。
In the 1990s a physicist called Lucien Hardy proposed a thought experiment that makes nonsense of the famous interaction between matter and antimatter—that when a particle meets its antiparticle, the pair always annihilate one another in a burst of energy. Dr Hardy's scheme left open the possibility that in some cases when their interaction is not observed a particle and an antiparticle could interact with one another and survive. Of course, since the interaction has to remain unseen, no one should ever notice this happening, which is why the result is known as Hardy's paradox.
二十世紀九十年代,一位名叫呂希安•哈代的物理學家提出了一個假想的試驗:粒子和反粒子相遇時,這組物質將相互抵消,並爆發出能量。這一實驗對於著名的物質與反物質的相互作用而言毫無意義。哈代博士的方案也留下了另一種可能,即在某些情況下,粒子和反粒子的相互作用無法觀察,那麼二者將相互影響並共存。當然,由於這種相互作用我們仍無法觀察,沒有人會注意到這一情況,這也就是為什麼這一結果以「哈代悖論」而聞名於世。
This week Kazuhiro Yokota of Osaka University in Japan and his colleagues demonstrated that Hardy's paradox is, in fact, correct. They report their work in the New Journal of Physics. The experiment represents independent confirmation of a similar demonstration by Jeff Lundeen and Aephraim Steinberg of the University of Toronto, which was published seven weeks ago in Physical Review Letters.
本週日本廣島大學的Kazuhiro Yokota和他的同事證明了,「哈代悖論」事實上是正確的。他們將他們的研究報告發表在了《新物理學雜誌》上。幾週前,在《物理評論快報》上也刊發了多倫多大學的Jeff Lundeen和Aephraim Steinberg對同類問題進行獨立實驗後得出的證明屬實的結論。
The two teams used the same technique in their experiments. They managed to do what had previously been thought impossible: they probed reality without disturbing it. Not disturbing it is the quantum-mechanical equivalent of not really looking. So they were able to show that the universe does indeed exist when it is not being observed.
兩個小組都在他們的實驗中用到了同樣的技術。他們設法完成了之前認為不可能的任務:他們在不擾動真實的情況下探查了真實。不擾動真實,在量子力學上相當於不去看。所以,他們能夠證明,當我們不去觀察時,世界確實存在。
The reality in question—admittedly rather a small part of the universe—was the polarisation of pairs of photons, the particles of which light is made. The state of one of these photons was inextricably linked with that of the other through a process known as quantum entanglement.
爭議中的真實——必須承認,這是世界的一小部分——是許多組光子[2](製造光的粒子)的極化。其中一個光子的狀態和另一個光子通過一種叫「量子糾纏」的過程存在內在聯繫。
The polarised photons were able to take the place of the particle and the antiparticle in Dr Hardy's thought experiment because they obey the same quantum-mechanical rules. Dr Yokota (and also Drs Lundeen and Steinberg) managed to observe them without looking, as it were, by not gathering enough information from any one interaction to draw a conclusion, and then pooling these partial results so that the total became meaningful.
極化的光子可以代替哈代的假想試驗中的粒子和反粒子,因為他們遵守同樣的量子力學規則。Yokota博士(以及Lundeen和Steinberg博士)「沒看」也成功觀察到他們,也即沒有在任何一種相互作用中採集足夠信息,從而得出結論,然後將這些局部的結論彙集起來,這樣,整個命題才得以證明。
What the several researchers found was that there were more photons in some places than there should have been and fewer in others. The stunning result, though, was that in some places the number of photons was actually less than zero. Fewer than zero particles being present usually means that you have antiparticles instead. But there is no such thing as an antiphoton (photons are their own antiparticles, and are pure energy in any case), so that cannot apply here.
這些研究者發現,在一些地方,出現的光子比應該出現的多了,而其它地方則少了。儘管,最讓人吃驚的結論是在某些地方,光子的數量事實上少於零。粒子少於零通常意味著這裡存在著反粒子。但是,沒有反光子這種物質(光子是他們自己的反粒子,在任何情況下,都是純粹的能量),所以這裡並不適用這一原理。
The only mathematically consistent explanation known for this result is therefore Hardy's. The weird things he predicted are real and they can, indeed, only be seen by people who are not looking. Dr Yokota and his colleagues went so far as to call their results 「preposterous」. Niels Bohr, no doubt, would have been delighted.
因此,對這一結果在數學上唯一相符的解釋是哈代悖論。他預言的奇怪的物質真實存在,而且事實上,他們也只有在人們「不看」時才能觀察到。Yokota博士和他的同事甚至稱他們的結論「荒謬至極」。而這無疑會讓尼爾斯•玻爾非常高興。
[1] 量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。
在量子力學中,一個物理體系的狀態由態函數表示,態函數的任意線性疊加仍然代表體系的一種可能狀態。狀態隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處於某一狀態的物理體系的某一物理量的操作,對應於代表該量的算符對其態函數的作用;測量的可能取值由該算符的本征方程決定,測量的期待值由一個包含該算符的積分方程計算。
關於量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
但在量子力學中,體系的狀態有兩種變化,一種是體系的狀態按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態的不可逆變化。因此,量子力學對決定狀態的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性——幾率因果性。量子力學中代表量子態的波函數是在整個空間定義的,態的任何變化是同時在整個空間實現的。
http://baike.baidu.com/view/2785.htm
[2] 光子是傳遞電磁相互作用的基本粒子,是一種規範玻色子。光子是電磁輻射的載體,而在量子場論中光子被認為是電磁相互作用的媒介子。與大多數基本粒子相比,光子的靜止質量為零,這意味著其在真空中的傳播速度是光速。與其他量子一樣,光子具有波粒二象性:光子能夠表現出經典波的折射、干涉、衍射等性質;而光子的粒子性則表現為和物質相互作用時不像經典的粒子那樣可以傳遞任意值的能量,光子只能傳遞量子化的能量。對可見光而言,單個光子攜帶的能量約為 4×10-19焦耳,這樣大小的能量足以激發起眼睛上感光細胞的一個分子,從而引起視覺。除能量以外,光子還具有動量和偏振態,但單個光子沒有確定的動量或偏振態。
http://baike.baidu.com/view/9448.htm
[3] 量子糾纏(quantum entanglement),又譯量子纏結,是一種量子力學現象,其定義上描述復合系統(具有兩個以上的成員系統)之一類特殊的量子態,此量子態無法分解為成員系統各自量子態之張量積(tensor product)。
具有量子糾纏現象的成員系統們,在此拿兩顆以相反方向、同樣速率等速運動之電子為例,即使一顆行至太陽邊,一顆行至冥王星,如此遙遠的距離下,它們仍保有特別的關聯性(correlation);亦即當其中一顆被操作(例如量子測量)而狀態發生變化,另一顆也會即刻發生相應的狀態變化。如此現象導致了「鬼魅似的遠距作用」(spooky action-at-a-distance)之猜疑,彷彿兩顆電子擁有超光速的秘密通信一般,似與狹義相對論中所謂的局域性(locality)相違背。這也是當初阿爾伯特•愛因斯坦與同僚玻理斯•波多斯基、納森•羅森於1935年提出以其姓氏字首為名的愛波羅悖論(EPR paradox)來質疑量子力學完備性之緣由。
量子力學是非定域的理論,這一點已被違背貝爾不等式的實驗結果所證實,因此,量子力學展現出許多反直觀的效應。量子力學中不能表示成直積形式的態稱為糾纏態。糾纏態之間的關聯不能被經典地解釋。所謂量子糾纏指的是兩個或多個量子系統之間存在非定域、非經典的強關聯。量子糾纏涉及實在性、定域性、隱變量以及測量理論等量子力學的基本問題,並在量子計算和量子通信的研究中起著重要的作用。
翻譯:http://ecocn.blogbus.com/logs/36240368.html
原文:www.economist.com
留言列表